常用的几种PCR方法的策略(二)


直接 PCR

直接PCR是指直接从样品扩增目标DNA,无需进行核酸分离纯化。直接PCR中,在高温变性阶段,诸如细胞、组织等材料在

特殊的缓冲液中被裂解,释放出DNA。因此这种方法简化了实验流程,减少了动手操作时间,同时可避免纯化步骤DNA的损

失。

图 .常规PCR和直接PCR对比。

推荐使用具有高合成能力的DNA聚合酶用于直接PCR扩增。细胞碎片、蛋白、脂质和多糖也随DNA一起被释放到裂解液中,

它们会抑制PCR反应。而具有高合成能力的DNA聚合酶能够耐受这类抑制剂,使直接PCR扩增成为可能。具有高合成能力的

酶通常具有更高的灵敏度,因此可从未纯化的样品中成功扩增微量DNA。

 

高GC含量PCR

具有高GC含量(>65%)的DNA模板由于G和C碱基间的强氢键影响,比较难以扩增。富含GC的序列同时也涉及二级结构。

因此,富含GC的序列可导致DNA聚合酶沿模板扩增时“卡顿”并干扰DNA合成。

为了扩增高GC含量的片段,双链模板必须解离,以便引物与模板结合,并使DNA聚合酶能够读取到序列。为了克服强GC相

互作用,最常用的方法是使用DMSO等PCR添加剂或辅助溶剂来帮助DNA变性。然而,这些试剂通常会降低引物的 Tm,所

以退火温度也需进行相应的调整。

高合成能力的DNA聚合酶由于与模板的结合能力更强,有利于完成高GC含量PCR。超高热稳定性DNA聚合酶也有利于高GC

含量PCR,因为较高的变性温度(如,使用98°C代替95°C)可能会促进双链解离和PCR扩增。

 

多重 PCR

多重PCR可在同一PCR反应管中同时扩增多个不同的片段。多种PCR不仅意味着节省时间、试剂和样品,还能够同时对比多

个扩增子。 

当一个PCR管中有多个引物对时,如在多重PCR中,因无法仅针对一个引物对或目的片段进行反应优化,而是要考虑到所有

引物和靶标,所以可能会出现非特异性扩增和效率降低。因此,为尽量减少由非特异性扩增导致的错配,应对引物进行精心

设计。

首先,引物序列应尽可能与其目的序列一一对应,并且所有引物的 Tm相差不应超过5°C。在多重PCR开始前,应利用单个

PCR反应验证每个引物对的特异性和扩增效率。

此外,扩增子应具有不同的大小,从而能够通过凝胶电泳对其进行分离鉴定。除了引物设计和扩增子大小,使用热启动DNA

聚合酶和专为多重PCR设计的缓冲液也将有助于获得成功的PCR结果和提高反应特异性。 

尽管多重PCR常作为终点法PCR,但由于其在多重标记和检测中的能力 ,将其用于实时荧光定量PCR也变得越来越流行。另

外,多重实时荧光定量PCR也常被用于遗传标志物的检测,用于人类身份鉴定。

>